
SQL-based Approach for Compiling

Ordered Decision Diagrams from

Device Models

Yousri El Fattah

Rockwell Science Center
1049 Camino Dos Rios

Thousand Oaks, CA 91360
yelfattah@rwsc.com

October 15, 2005

Abstract

To enable autonomy and fault-tolerance intelligent software is needed
that takes a device model and compiles it into structure that facilitates
computing in real-time a systems operating mode and how to reconfig-
ure to a desired target mode. We describe an approach that compiles
a relational database representation of a system description into a
structured procedure (SP) for diagnosis. The approach uses variable
elimination to compute the SP in a compilation phase, prior to diag-
nosis, in the form of a directed acyclic graph (DAG). The nodes of the
dag are SQL queries and the edges specify query execution precedence.
The SP can be computed from the system structure and the subset
of observable variables and can exploit the non-structural properties
to simplify the elimination steps. At diagnosis time the SP is used to
perform the diagnosis task, taking as input the values of the observed
variables and producing as output the set of all minimal diagnoses.

1 Introduction

Future Moon and Mars explorations will depend on cooperative space sys-
tems that operate largely autonomously without ground support for extended
periods of time. In order to enable this capability, such a system of sys-
tems will require a new generation of robust, fault-tolerant software that

1



supports autonomous operation. The use of such intelligent software would
lead to improved sustainability of exploration missions by enhanced effec-
tiveness and efficiency through appropriate responses to anomalous events,
increased safety and reliability through quick and autonomous responses to
faults, increased affordability through reduced cost of ground operations, and
increased flexibility through applicability to a wide variety of mission systems
and platforms.

To enable autonomy and fault-tolerance intelligent software is needed that
takes a device model and compiles it into structure that facilitates computing
in real-time a systems operating mode and how to reconfigure to a desired
target mode [Barrett2005]. Traditional approach relies on hand-crafting rule-
based diagnosis and recovery systems that require intensive human effort
and expertise at highly increasing cost. As complexity spirally increases
there is the inevitability that humans will overlook subtle interactions of how
components can interact and fail producing rule-based systems with limited
coverage of the space of possible faults. Furthermore the hand-crafted rule-
based systems are hard to revise for consistency with change in device models
and the rule-based inference engine may be ad-hoc making it hard to provide
guarantees on soundness and on computational complexity.

To address the need for automated approaches to compiling diagnostic
rules from device models few approaches have been proposed that rely on
formulating device models in propositional logic and the computing of a
compiled representation in the form of prime implicates [J.de Kleer1990] or
decomposable negative normal form [Huang & Darwiche2005].

In this work, we present a novel approach that exploits database tech-
nology and in particular the structured query language (SQL). Previously,
El Fattah [El Fattah1999] has introduced a framework for specification and
representation of models in the language of relational databases. Adopting
that representational framework we present in this paper a compositional
approach to diagnosis based on a variable elimination algorithm.

Bringing model-based diagnosis to the realm of relational databases has
several advantages. The modeling data typically resides in a database as
in factory automation [El Fattah, Provan, & Darwiche1999] and represent-
ing models in the same language as the data enhances the integration of
model-based diagnosis in real-life applications. Relational database manage-
ment systems are robust and are designed to support very large amounts
of data and thus can handle very large models. Data mining approaches
are becoming more actively intertwined with relational databases and we
expect to see this trend accelerating with the proliferation of data on the
world wide web. Embedding model based diagnosis in the framework of re-
lational databases enables integration with data mining tools for automated

2



construction of models from data and for automated induction of diagnostic
rules from stored solutions of diagnostic problems.

Previously, El Fattah and Dechter [El Fattah & Dechter1995] have pre-
sented an approach to model-based diagnosis which formulates diagnosis
as an optimization task in constraint networks. The approach uses tree
clustering which involves transforming the original problem into a tree-like
problem that can then be solved by a specialized efficient tree-solving algo-
rithm [Dechter & Dechter1988, Dechter, Dechter, & Pearl1990]. The trans-
forming algorithm identifies subproblems that together form a tree, and the
solutions to the subproblems serve as the new values of variables in a tree
metalevel problem. The metalevel problem is called a join-tree.

Variable elimination provides an alternative approach, with the same
worst case complexity as tree clustering, which offers the advantage of in-
terleaving the join tree transformation with the inference. In variable elim-
ination the join tree is constructed incrementally while partial solutions are
also computed. Using elimination we can partially evaluate the portions of
the join tree that have small cliques and that can be solved without any
space problem. This has practical implication for scaling-up diagnosis since
real-life domains, e.g., digital circuits, are shown to have join trees the ma-
jority of whose clique sizes are relatively small while few cliques are distinctly
large [El Fattah & Dechter1996].

The contribution of this paper is a compositional framework for model-
based diagnosis embedded in the SQL language of relational databases. By
explicitly representing the structure of the queries and their dependencies
we are providing a meta language to adapt diagnostic inference from one
problem to another. For instance, we can incrementally adapt our structured
querying procedure to changes in the system description or to changes in the
observation.

By separating the querying generation from their execution we can reuse
parts of the diagnostic inference from one observation instance to another.
Also, by formulating the elimination algorithm in terms of SQL queries we
are leveraging all the query processing capabilities and query optimization
techniques readily available in relational database management systems. For
example, we can improve efficiency by exploiting known indexing techniques
for query optimization and we can take advantage of the methods for com-
puting the join of relational tables which are part of the SQL query engine.

The paper is organized as follows. First we describe our database repre-
sentation of model-based diagnosis. Next we present a set of generic queries
in SQL and describe our algorithms for query compilation and for process-
ing observation. Next we provide discussion and related work followed by
concluding remarks.

3



2 Database Representation

In this section we describe the representation of a model based diagnosis
problem as an optimization query in a relational database.

Definition 1 [Relational Databases [Maier1983]] Let U = {U1, ..., Un} be a
set of attributes (variables), each with an associated domain. A relational

database scheme R over U is a collection of relation schemes {R1, R2, . . . , Rp},
where

⋃p

i=1
Ri = U , and Ri 6= Rj, if i 6= j. A relational database ∆ on

database scheme R is a collection of relations {r1, r2, . . . , rp}. Each relation

ri on relation scheme Ri, written ri(Ri), is a set of value tuples {t1, t2, . . . , tp}
for the attributes in Ri from their respective domains. We write t.X (or
simply tX) to denote the value assigned by a tuple t to the subset of variables
X ⊂ U . A database ∆ on scheme R over U entails a relation r on U defined
as the join of all relations in ∆. That is r is the set of tuples {t = (U1 =
u1, . . . , Un = un)|∀j, tRj

∈ rj} Each tuple t ∈ r is called a consistent solution
for ∆.

Definition 2 [Weighted Relation] A weighted relation is a pair: (r, w), where
r is a relation and w is a function defined on the scheme of r. That is, for each
tuple t ∈ r there is a weight assigned whose value is w(t). A weighted relation
(r, w) can be represented by a single relation whose scheme is R∪{W} where
R is the scheme of r and W is a weight variable whose value is determined
by the weight function w.

Following [de Kleer, Mackworth, & Reiter1992] we define model-based di-

agnosis as a triple: (SD, COMPS, OBS). The system description, SD, is
a set of first-order sentences. The system components, COMPS, is a finite
set of constants. A set of observations, OBS, is a set of first-order sen-
tences. To formulate the diagnosis task as SQL querying, we map the triple
(SD, COMPS, OBS) into a relational framework. The system description
SD will be described in terms of two sets of variables: the system variables

X1, ..., Xn, which are the inputs and outputs of all components, with their
associated finite domain values dom(X1), . . . , dom(Xn), and the assumption

variables A = {A1, . . . , Am}. Each assumption variable Aj is associated with
component cj ∈ COMPS and describes the component’s functioning status.
In the simplest case, these are bi-valued variables indicating whether the com-
ponent is normal (value ok) or abnormal (value faulty). In the more involved
case, they can index different fault models. Each component cj ∈ COMPS

is associated with a relational table rj describing its input-output behaviors
under all its normal and abnormal conditions. Thus, the table rj is defined
over the scheme Rj = {Aj} ∪ Sj, where Sj is the set of input and output

4



variables for component cj. The observations OBS translate to forcing value
assignments for a subset of system variables.

We augment the relation rj for each component cj by a weight (or cost)
whose value is a non-negative function of the assumption variable Aj for the
component. The function is zero if Aj = ok and is positive if Aj 6= ok.

Given a model description and a set of observations, the diagnosis task is
to construct an explanation, namely, an assumption tuple (A1 = a1, . . . , Am =
am) that can be extended to a solution (X1 = x1, . . . , Xn = xn, A1 =
a1, . . . , Am = am) consistent with the observations. The cost of an explana-
tion is the sum of the costs associated with the assumption variables. That
is,

w({A1 = a1, . . . , Am = am}) =
∑

Aj∈A

wj(Aj = aj). (1)

If the cost has the same value for all non-ok modes then the minimal-cost
diagnosis is the minimal-cardinality diagnosis.

Definition 3 [Model Description] A model description for model-based diag-
nosis is represented by a database ∆ of weighted relations {rj | j ∈ COMPS}
where COMPS is the finite set of indexes for the system components. Each
component j has a relation rj defined over the scheme Rj = {Aj}∪Xj∪{Wj}.
Xj is the set of input and output variables for the component. Aj is an as-
sumption variable indicating the component’s functioning status. Wj is a
weight variable (or cost). In the simplest case, an assumption variable is a
bi-valued variable indicating whether the component is normal (value ok) or
abnormal (value faulty). In the more involved case, they can index different
fault modes such as stuck-at-zero and stuck-at-one. A weight variable Wj is
a non-negative function wj of the assumption variable Aj for the component.
The function is zero if Aj = ok and is positive if Aj 6= ok.

Definition 4 [Diagnosis Problem] A diagnosis problem consists of a model
description and a set of observations. The model description is defined on a
set of system variables X, and assumption variables A. The observation is
a value assignment for a set of observed variables O ⊂ X. We consider the
model description as a database of weighted relations, rj(Xj, {Aj}, {Wj}) for
j = 1, . . . , m, where the weight Wj for relation rj is a non-negative function
wj of the assumption Aj ∈ A. Xj ⊂ X is typically the input and output
variables for a system component cj. The observation is given by a relation
Obs(V ar, V al) of variable-value pairs for each variable in O.

The diagnosis task is to construct an explanation, namely, an assump-
tion tuple (A1 = a1, . . . , An = an) that can be extended to a solution

5



(X1 = x1, . . . , Xn = xn, A1 = a1, . . . , An = an) consistent with the obser-
vations. The cost of an explanation is the sum of the costs associated with
the assumption variables. That is,

w({A1 = a1, . . . , Am = am}) =
∑

Aj∈A

wj(Aj = aj). (2)

If the cost has the same value for all non-ok modes then the minimal-cost
diagnosis is the minimal-cardinality diagnosis.

The diagnosis is a relation on the assumption variables defined as the
projection on the assumption variables of the join of all model relations
having minimum total cost. This can be stated by the following relational
query,

πA min
W1 + . . . + Wn

BC
n
j=1

rj(Xj, {Aj}, {Wj}) (3)

Each rj is obtained from the relation rj and Obs by removing all tuples in
rj that assign values to variables inconsistent with Obs.

rj = {t ∈ rj | Y = Xj ∩O ∧ ∀j (Yj, tYj
) ∈ Obs} (4)

Graph representation for a relational database can be constructed in two
ways, as a primal graph or a dual graph. A primal graph represents variables
by nodes and associates an edge with any two nodes residing in the same
relation. A dual graph represents each relation by a node and associates a
labeled arc with any two nodes that share variables. If the dual graph is a tree
(called a join tree) or can be transformed into a tree by removing redundant
arcs (in linear time), then the database is said to be acyclic [Maier1983]. In
that case, a consistent solution can be assembled in linear time.

3 Example

This section is aimed to provide an informal description of our method using
a realistic example of a circuit with fanout nodes, whose database model is
not acyclic. Figure 1 shows the combinatorial circuit, c17, from the bench-
mark circuits [Brglez & Fujiwara1985] having 6 components, 5 inputs, and 2
outputs. The observed variables are the circuit’s inputs and outputs. Each
component is named by its output variable, and is associated with an assump-
tion variable named by the letter “A” followed by name of the component.
For example, “A10gat” is the assumption variable for the component whose
output is “10gat”. The weight parameter for each relation is labeled “Cost”.

6



Figure 1: Circuit c17.

In the compilation phase we compute 4 types of queries: conditioning,
combination, elimination and solution queries. We begin with the condition-
ing queries; each query applies to a relation whose schema variables include
observed variables. We have 6 conditioning queries, one for each gate. The
query, cond 10gat, for gate 10gat is given by the SQL:

SELECT [10gat].[10gat], [10gat].A10gat,

[10gat].Cost

FROM 10gat, Obs, Obs AS Obs_1

WHERE ((Obs.Var="1gat") AND

([10gat].[1gat]=[Obs].[Val]) AND

(Obs_1.Var="3gat") AND

([10gat].[3gat]=[Obs_1].[Val]));

The above statement means to selects from the relation 10gat the tuples
that are consistent with the observed values and projects the selection on the
non-observed variables: 10gat, A10gat and Cost.

Each conditioning query modifies the database by replacing the condi-
tioned relation by the relation computed by the query. After the condition-
ing phase is completed the elimination phase begins. The elimination phase
processes the variables one by one in some designated ordering.

The elimination phase also modifies the database at each elimination
step. An elimination step consists of collecting all the current relations that
mention the eliminated variable, replacing them with their join relation and
summing their weights, which is expressed by a combination query. If there
is only one relaion that mentions the eliminated variable then the combi-
nation query is not needed. Next, an elimination query is comptued by
projecting out the eliminated variable and keeping only the tuples with the
minimum weight. A solution query is also computed which determines the
optimal value of the eliminated variable for each value tuple of the remaining
variables.

7



We consider the ordering; 11gat, 16gat, 19gat, A16gat, A19gat, 10gat,
A22gat, A23gat, A10gat, A11gat, where the variable are eliminated in reverse
order.

We first eliminate the variable A11gat. There is only one relation that
mentions that variable, namely cond 11gat. The elimination query is:

SELECT cond_11gat.[11gat],

Min(cond_11gat.Cost) AS Cost

FROM cond_11gat

GROUP BY cond_11gat.[11gat];

The solution query is:

SELECT cond_11gat.[11gat], cond_11gat.A11gat

FROM elim_A11gat, cond_11gat

WHERE((cond_11gat.[11gat]=[elim_A11gat].[11gat])

AND (cond_11gat.Cost=[elim_A11gat].[Cost]));

After the elimination phase is computed we end up with a set of solution
queries that can be executed in the prescribed variable ordering.

The solution query for the first variable, 11gat computes a unary relation
on that variable given by the SQL,

SELECT comb_11gat.[11gat]

FROM elim_11gat, comb_11gat

WHERE (comb_11gat.Cost=[elim_11gat].[Cost]);

The query simply selects the tuples in the combination query that has
the minimum cost.

The next solution quey computes the value assignment for the second
variable 16gat as function of the value of the first variable. All the solution
queries will be such that when executed in the prescribed ordering, are guar-
anteed to construct a complete solution by repeatedly extending the partial
solution one step at a time beginning with the first variable without back-
tracking.

The solution queries can be depicted by a dag, called solution dag. Each
node of the dag represents a distinct variable and a value assignment can be
computed by a solution query as a function of the value assignments of the
parent variables for the node. The solution dag for the circuit c17 is shown
in Figure 2

4 Compilation Approach

This section defines generic queries that perform basic inference operations.
The generic queries will be used by our elimination algorithm to compile

8



Figure 2: Solution dag for circuit c17.

system description into structured procedure for diagnosis. We assume fa-
miliarity with the structure of the structured query language (SQL).

4.1 Conditioning query

The query cond(r; X), written δX=x r, takes a weighted relation r(R ∪W )
and a subset X ⊂ R and returns the relation obtained by selecting only
tuples from r whose X value equals a parameter x and by projecting onto
R \X,

SELECT r.[R \X] FROM r WHERE X = x

4.2 Combination query

The query comb({r1, . . . , rk}), written r1 ⊗ . . . ⊗ rk, takes k > 2 weighted
relations r1(R1∪W ), . . . , rk(Rk∪W ) and combines them into a weighted rela-
tion obtained by joining the k relations and summing their weights. Without
loss of generality the combination query for k = 2 is as follows:

SELECT r1.R1, r2.[R2 \R1], r1.W + r2.W As W

FROM r1, r2

WHERE r1.(R1 ∩ R2) = r2.(R1 ∩ R2)

4.3 Elimination query

The query elim(r, X), written ⊕X r, takes a weighted relation r(R∪W ) and
a subset X ⊂ R and returns a new relation obtained by projecting out X

and minimizing the cost.

SELECT r.[R \X], Min(W )

FROM r GROUP BY r.[R \X]

9



Algorithm: compile-SP

Input: relational schema of the system description and the observables
Output: SP represented by a dag G.
initialization: L is the set of associations between variables and relations; G

is empty.

Conditioning: For each relation ri(Ri) whose scheme includes observed vari-
ables Oi create a conditioning query cond(ri; Oi) and replace all associ-
ations for ri in L by those of the conditioning relation.

Elimination: Until L is empty do: (i) select a variable Xi having minimum
number of neighbors; i.e., variables associated with same relations as Xi

in L; record Xi in an ordering table. (ii) if Xi is associated with a set
{ri1, . . . , rik} of two or more relations then create a combination query
si =

⊗k

j=1
rij; add si to the nodes of the dag and add edges directed from

each rij to si else si is the one relation associated with Xi. (iii) create
an elimination query re =

⊕
Xi

si and add it to the nodes of the dag and
add an edge from si to re. (iv) create a solution query x∗

i = sol(si, Xi)
add it to the dag’s node and add two edges from re and si to x∗

i . The
variables other than Xi in the relation x∗

i are the parents pa(Xi). (v)
update the association L by deleting all entries on Xi and adding new
associations between pa(Xi) and the elimination relation re.

Diagnosis: First, compute an answer query qA by proceeding in reverse elim-
ination ordering: (i) qA ← ∅; (ii) For i = n downto 1 do qA ← qA BC x∗

i ;
Then, compute a diagnostic query that selects the assumption variables
from qA.

Figure 3: Algorithm compile-SP.

4.4 Solution query

The query sol(r, X) takes a weighted relation r(R ∪ W ) and returns the
functional relation x∗ |r: (R \X) → X obtained by computing the value x∗

of X in relation r having minimum weight given the value of R\X. A solution
query requires the elimination subquery, re = elim(r, X) and is given by the
SQL expression:

SELECT r.R FROM re, r

WHERE re.W = r.W AND re.[R \X] = r.[R \X]

10



5 Query Compilation

In this section we present a compilation algorithm for computing structured
procedures (SP) in SQL for diagnosis. The algorithm is based on variable
elimination and takes as input a schema of the system description and the
observation and outputs a dag whose nodes are instantiations of generic
queries and whose edges determine execution precedence for the queries.

The compile-SP algorithm in Figure 3 consists of 3 main steps: condi-
tioning, elimination, and diagnosis. The conditioning step eliminates all the
observable variables by applying a conditioning query to each relation whose
scheme includes observable variables. The elimination step eliminates the
non-observable variables one by one. The elimination step also creates solu-
tion tables for the eliminated variables. The solution tables are represented
by a solution dag whose set of families (nodes and their direct parents) are
the schema for the tables. The diagnosis step computes an answer query that
joins the solution tables then projects the answer on the set of assumption
variables.

The algorithm maintains the information on the changing database schema
during elimination in a table that records current associations between vari-
ables and relations. The output of the algorithm is a structured querying
procedure represented by a dag that can be executed for any given observa-
tion instance.

Example 1 The compiled procedure dag for circuit c17 computed by the
compile-SP algorithm is shown in Figure 4. The root nodes of the dag are
the conditioning queries and the internal nodes are elimination, combination,
and solution queries. Elimination of the assumption variables required no
combination queries since each assumption resides in only one component.
The non-observables shared in the schema of more than one relation require
combination queries prior to elimination. We note that eliminating 16gat

required combining 3 relations instead of 2, indicating added edges in the
process of elimination due to the fact that the database is initially cyclic.
The ordering of elimination is 11gat, 16gat, 19gat, A16gat, A19gat, 10gat,
A22gat, A23gat, A10gat, A11gat. The solution dag for the circuit is shown
in Figure 2

6 Processing Observations

In this section we describe an algorithm for processing observation given
the compiled SP. The algorithm is shown in Figure 5. The algorithm uses

11



Figure 4: SP graph for circuit c17.

the structure of the SP represented as a dag. The algorithm caches the
tables computed by the queries and updates the tables only if needed when
processing next observations. The key idea is that the diagnosis answer is
sensitive only to changes in the input conditioning tables which may not
change for multiple observation tuples. For example, the nand gate 10gat
in Example 3 will not change the conditioning table for 3 observation tuples
where one of the inputs is false Thus the conditioning input tables to the
SP can be viewed as “triggers” for incrementally updating the diagnosis
answer to adapt to changes in the observation. If there is no modification
in the input tables then there is no change in the diagnosis answer. If the
observation produces triggers then the process-OBS will execute only part of
the SP determined by a local propagation of the triggers through the dag.
Checking whether a new observation changes the current conditioning table
is equivelent to checking equality of two relations.

12



Algorithm: process-OBS

Input: SP as a dag G; observation tuple OBS

Output: One (All) explanations or diagnosis
/*First we check if the observation creates new triggers then execute only part
of the procedure to update tables*/

1. for each root (conditioning) node in SP

2. if the new conditioning table is different from the previous table

3. then mark the query as active

4. Until G is empty do:

(a) Determine all the root nodes Nroot in G

(b) for each node in Nroot do:

(c) if the node is active then

(d) execute the query for the node

(e) mark all the children as active

(f) remove the node from G.

5. Execute the solution or diagnosis query.

Figure 5: Algorithm process-OBS

Example 2 Executing the SP for circuit c17 on the observation where all
inputs are false and all outputs are true will yield one single fault diagnosis,
namely the gate 16gat is sa0 . Applying process-OBS on a new set of obser-
vation where only the input 1gat is changed to true we get no activation and
the diagnosis will remain the same as before. Applying process-OBS on a
new set of observation where the input 3gat is also modified to true with the
rest remaining the same we get one trigger: qr cond 10gat. The propagation
of the trigger and the part of the SP that will get executed by process-OBS is
highlighted on the dag in Figure 4. Only 12 out of 30 tables will get updated
by executing the 12 highlighted queries of the SP. The diagnosis for the new
observation consists of 3 single faults: A23gat = sa1 or A19gat = sa0 or
A16gat = sa0 .

13



7 Discussion and Related Work

Our approach is based on the general technique of variable elimination in non-
serial dynamic programming [Bertelè & Brioschi1972] formulated in a rela-
tional framework similar to bucket elimination [Dechter1996]. Our approach
differs from bucket elimination in that we express the elimination steps ex-
plicitly in relational algebra which enables execution on any database query
engine and in that we separate the compilation of elimination procedure from
their execution phase so that compilation can be done prior to actual obser-
vation. The worst-case time and space complexity of our compiled procedure
is O(exp(w∗(d)) where d is the min-degree ordering [Bertelè & Brioschi1972]
(page 55) and w∗ is the induced width [Dechter & Pearl1989] for the or-
dered primal graph after removing the observable nodes and their incident
edges. This worst case complexity may not reflect the actual average case
performance of our algorithm and is expected to improve by our caching and
reuse of inference across observations. The compilation approach presented
in [Darwiche1998] is similar to ours in that it exploits the structure of the
device and has the same worst case complexity; namely exponential in the
tree width. Our approach differs from [Darwiche1998] in both what is com-
piled off-line and what is processed on-line. What we compile off line is a
SQL-querying procedure that depends only on the structure of the system
description while [Darwiche1998] computes a “compiled system description”,
namely a logical sentence equivalent to eliminating the non-observables. At
observation time [Darwiche1998] computes the diagnosis from the compiled
system description by performing conditioning and optimization which in our
approach are already included in the compilation phase. Standard approach
to model-based diagnosis [Reiter1987] is based on the notion of conflicts
which are used to guide the search in the diagnostic space. Conflicts are
assumption tuples that have no solutions, i.e., they are inconsistent with the
system description and the observation. A variation of our querying proce-
dure can be computed to form a correct and complete consistency checker
that can be used in combination with the conflict based approach to diagno-
sis [Mauss & Sachenbacher1999]

8 Concluding Remarks

In this paper we present a structure-based approach to diagnosis embed-
ded in the language of relational databases. The approach compiles the
schema of the system description and the observation to a structured pro-
cedure represented by a dag whose nodes are SQL queries and edges denote

14



execution precedence. Our approach is suitable for compiling efficient proce-
dures from device descriptions to perform onboard model-based diagnostics.
Our approach speeds up the diagnostics in two ways. One, the compila-
tion procedure executes off-line to compute a structured querying procedure
that exploits the problem structure and SQL query optimization techniques.
Two, the procedure execution at observation time exploits inference made on
previous observations to avoid expensive recomputation. If the time avail-
able for diagnostic reasoning onboard is stringent we can run our compiled
procedure off-line on all instantiations of the observable variables and record
the results in a database. This is feasible using our approach since diagnosis
is computed once for each observation pattern defined as sets of observation
tuples having same conditioning tables.

References

[Barrett2005] Barrett, A. 2005. Model compilation for real-time planning and
diagnosis with feedback. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence(IJCAI-05).

[Bertelè & Brioschi1972] Bertelè, U., and Brioschi, F. 1972. Nonserial Dynamic
Programming. New York: Academic Press.

[Brglez & Fujiwara1985] Brglez, F., and Fujiwara, H. 1985. A neutral netlist of 10
combinational benchmark circuits and a target translator in fortran. Proc. IEEE
Int. Symposium on Circuits and Systems. distributed on a tape to participants of
the Special Session on ATPG and Fault Simulation, Int. Symposium on Circuits
and Systems, June 1985; partially characterized in F. Brglez, P. Pownall, R.
Hum, Accelerated ATPG and Fault Grading via Testability Analysis.

[Darwiche1998] Darwiche, A. 1998. Compiling devices: A structure-based ap-
proach. In International Conference on Principles of Knowledge Representation
and Reasoning (KR-98),, 156–166.

[de Kleer, Mackworth, & Reiter1992] de Kleer, J.; Mackworth, A.; and Reiter, R.
1992. Characterizing diagnoses and systems. Artificial Intelligence 56:197–222.

[Dechter & Dechter1988] Dechter, R., and Dechter, A. 1988. Belief maintenance
in dynamic constraint networks. In Proceedings, AAAI-88, 37–42. Menlo Park,
CA: AAAI Press/ The MIT Press.

[Dechter & Pearl1989] Dechter, R., and Pearl, J. 1989. Tree clustering for con-
straint networks. Artificial Intelligence 38:353–366.

15



[Dechter, Dechter, & Pearl1990] Dechter, R.; Dechter, A.; and Pearl, J. 1990. Op-
timization in constraint networks. In Olivier, R., and Smith, J., eds., Influence
Diagrams, Belief Nets and Decision Analysis. New York: J. Wiley. 411–425.

[Dechter1996] Dechter, R. 1996. Bucket elimination: A unifying framework for
probabilistic inference. In Horvitz, E., and Jensen, F., eds., Uncertainty in
Artificial Intelligence. Morgan Kaufmann. 211–219.

[El Fattah & Dechter1995] El Fattah, Y., and Dechter, R. 1995. Diagnosing tree-
decomposable circuits. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95).

[El Fattah & Dechter1996] El Fattah, Y., and Dechter, R. 1996. An evaluation
of structural parameters for probabilistic reasoning: Results on benchmark cir-
cuits. In Uncertainty in Artificial Intelligence (UAI-96), 244–251.

[El Fattah, Provan, & Darwiche1999] El Fattah, Y.; Provan, G.; and Darwiche,
A. 1999. Model based diagnosis for factory automation: Challenges and open
problems. In Working Notes of the Tenth International Workshop on Principles
of Diagnosis (DX99). 68–77.

[El Fattah1999] El Fattah, Y. 1999. Structured modeling language for automated
modeling in causal networks. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99), 1108–1114.

[Huang & Darwiche2005] Huang, J., and Darwiche, A. 2005. On compiling system
models for faster and more scalable diagnosis. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-05), 300–306.

[J.de Kleer1990] J.de Kleer. 1990. Compiling devices and processes. In Fourth
International Workshop on Qualitative Physics.

[Maier1983] Maier, D. 1983. The Theory of Relational Databases. Rockville, MD:
Computer Science Press.

[Mauss & Sachenbacher1999] Mauss, J., and Sachenbacher, M. 1999. Conflict-
driven diagnosis using relational aggregations. In Working Notes of the Tenth
International Workshop on Principles of Diagnosis (DX99). 174–183.

[Reiter1987] Reiter, R. 1987. A theory of diagnosis from first principles. Artificial
Intelligence 32:57–95.

16


